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Minimization of the Renyi entropy production in the stationary states of the Brownian process
with matched death and birth rates
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We analyze the Fleming-Viot process. The system is confined in a box, whose boundaries act as a sink of
Brownian particles. The death rate at the boundaries is matched by the branching~birth! rate in the system and
thus the number of particles is kept constant. We show that such a process is described by the Renyi entropy
whose production is minimized in the stationary state. The entropy production in this process is a monotoni-
cally decreasing function of time irrespective of the initial conditions. The first Laplacian eigenvalue is shown
to be equal to the Renyi entropy production in the stationary state. As an example we simulate the process in
a two-dimensional box.

DOI: 10.1103/PhysRevE.69.016110 PACS number~s!: 05.70.Ln, 65.40.Gr, 05.90.1m
ti

jec
te
o

he
s
a
ta
ro
q

nt

m

t
b

y
e

n-
o
h
t

e

m
o

m

her-

tic
g
u-

the

om

ar
h

he
s a

a

hat
-

he
I. INTRODUCTION

Irreversible entropy production is one of the key quan
ties in nonequilibrium thermodynamics@1,2#. For open sys-
tems not far from the equilibrium states it has been con
tured by Prigogine that a system in the stationary sta
compatible with the external constraints, adopts such c
figurations which minimize the entropy production~MEP!.
Far from equilibrium MEP breaks down, although part of t
entropy production given by the contraction of the pha
space has been shown to be minimized in some special c
@3#. In general one of the approaches to nonequilibrium s
tistical mechanics is related to the study of the entropy p
duction and escape rate of transport processes far from e
librium @4–7# with the emphasis on the Lyapunov expone
and the onset of chaos.

There is yet another approach to nonequilibrium syste
from the perspective of nonextensive thermodynamics@8#.
The construction of the nonextensive thermodynamics
based on the Tsallis or Renyi entropies. In both cases
entropy is the property of the whole system and cannot
defined for any subsystem. However, the Tsallis entrop
nonextensive in the strong sense; i.e., for two independ
systems~independent in terms of the probabilities of co
figurations! the entropy of the sum of the systems is n
equal to the sum of their entropies. The formalism of t
nonextensive thermodynamics has been applied, e.g., to
onset of chaos in the logistic maps@9#, anomalous diffusion
in the presence of external forces@10#, dynamic linear re-
sponse in nonextensive systems@11#, connection between
self-organized critical dissipative systems and the Tsallis
tropy @12,13#, fractional diffusion process@14#, and low-
dimensional dissipative systems@15#. One of the goals of
many papers devoted to the nonextensive thermodyna
was to analyze the formal structure of the theory and sh
which of the results of the theory for ordinary thermodyna
1063-651X/2004/69~1!/016110~10!/$22.50 69 0161
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ics can be translated into the structure of nonextensive t
modynamics@8,16–19#.

It is the purpose of this work to simulate a stochas
model of Brownian particles with death and branchin
(birth), which in the stationary state adopts such a config
ration which minimizes the Renyi entropy production.This
result is complementary to previous approaches, where
nonlinear Fokker-Planck equation~NLFPE! was studied for
various thermostatics and the NLFPE was derived fr
maximization of the appropriate entropy functional@20,21#.

Our methodology is as follows. We first define a nonline
equation for the evolution of the probability density in whic
nonlinearity appears in integral form. From the form of t
equation we deduce the form of the appropriate entropy a
functional of the probability distribution,S@p#. The entropy
is chosen in such way that its evolution in time follows
prescription known from ordinary nonequilibrium
thermodynamics—i.e.,

dS@p#

dt
52l@p#1s@p#, ~1!

wherel is the flux of the entropy ands is its production
which must be positive definite. Moreover, we also insist t
the entropy productions must be minimized in the station
ary state; i.e., the equation

ds@p#

dp
50 ~2!

must lead to a stationary distribution ofp. Such a prescrip-
tion for the entropy functional led us unambiguously to t
Renyi entropy in the case of our process~described below!:
©2004 The American Physical Society10-1
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S@p#5
1

12a
lnE pa, ~3!

with a52, where the integral is over the whole system.
The process, described by the aforementioned equat

which we study in this paper is the Brownian motion of
multiparticle system in a box with absorbing boundary co
ditions@22,23#. Additionally we assume that if one particle
killed at the boundary, another one, picked at random in
system, is duplicated, giving birth to a new particle in t
same site. As we can see the birth rules are chosen in su
way as to keep the number of particles constant at each
step. Moreover, the nonextensive nature of the system is
dent: the flux of the particles at the boundary affects imm
diately the distribution of the particles inside the system,
matter how large the system is. Such a system canno
divided into subsystems.

The paper is organized as follows: In Sec. II we descr
the system containing a finite number of Flemming-Viot p
ticles. In Sec. III we introduce the continuous model of t
above system, and we analyze the evolution of the proba
ity distribution. In Sec. IV related thermodynamic functio
als are studied, especially the entropy production. In Sec
we present the results of a computer simulation of the tw
dimensional systems. The Appendix contains the proofs
the H theorem equivalent for the entropy production.

II. BROWNIAN MOTION WITH MATCHED DEATH AND
BIRTH RATES

Let us consider a system containing many particles e
performing an independent random walk inside a given
gion. A special kind of boundary condition is imposed:
particle must vanish after reaching the border of the reg
and, exactly at the same time, another particle~chosen at
random! is duplicated. In other words, a particle is remov
when it reaches any point located at the boundary. Simu
neously, a new particle is introduced and placed at the p
tion of randomly chosen particle. It follows that the tot
number of the particles in the system is conserved. The p
ability of the multiplication process described above is ide
tical for each particle. Further Brownian motions of the ch
sen particle, and its copy, are independent.

The evolution of the system under consideration depe
on the number and initial position of the particles. Unfort
nately, a quantitative description of the values characteriz
the system state~like entropy or even the local density o
particles! is burdened with fluctuations. Their significanc
vanishes in the limit when the number of particles goes
infinity.

Although we have performed numerical simulations
the aforementioned system with finite particle number, we
not include these results in the paper. Instead of that
examined the continuous model of probability distributi
evolution. Both models—the many-particle and the contin
ous one~described in the following section!—give the same
results in the limit of a large number of particles.

We will show that irrespective of the initial conditions
the particle distribution evolves towards a steady state. If
01611
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region has a connected interior, there exists exactly
steady state. Contrary to the system with reflective bound
conditions, the particle distribution in the steady state of
system under consideration is not uniform. Due to the
sorbing boundary conditions, the particles tend to group
the inner part of the region rather than near the boundar

III. CONTINUOUS MODEL

The probability density function~PDF! of the system,
p(r ,t), satisfies the following equations@22#:

]

]t
p~r ,t !5KDp~r ,t !1L~ t !p~r ,t !, ~4!

E
V
p~r ,t !dV51, ~5!

whereK is a positive diffusion constant, and the integrati
is over whole volume of the system. The termL(t)p(r ,t)
represents particle multiplication at the pointr at time t. A
function L(t) is chosen to compensate the actual absorp
of particles at the boundaries. For each pointr0 at the bound-
ary of the region, the following boundary condition is im
posed:

p~r 0,t !50. ~6!

Combining Eq.~4! with the condition given by Eq.~6! im-
plies that

Dp~r 0,t !50 ~7!

for eachr0 on the boundary.
Integrating Eq.~4! over the system, we obtain

L~ t !52KE
V
DpdV ~8!

or, applying the Green theorem,

L~ t !52K R
]V
“p•dS. ~9!

By substitutingL(t) we can rewrite Eq.~4! governing the
evolution of the system in the following form:

]p

]t
5KDp2KS E

V
DpdVD p. ~10!

By setting]p/]t50, we obtain the equation for the station
ary solutionps(r ):

Dps~r !5S E
V8

Dps~r 8!dV8D ps~r !. ~11!

The equation must be satisfied for eachr . However, the ex-
pression in brackets is a number independent ofr . Therefore
Eq. ~11! is the equation for the Dirichlet Laplacian eige
functions for the considered region@24,25#. Only one of such
0-2
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eigenfunctions satisfies the condition of non-negative P
values. It is the eigenfunction associated with the first eig
valuel1 ~with the notion as in the next paragraph!:

Dps5l1ps . ~12!

This stationary solution is always asymptotically achieved
the limit of t→` ~proved in@25#!.

A. Evolution in the reciprocal space

The form of the stationary state suggests the eigenfu
tion decomposition to be a helpful tool also in analysis
dynamics far from the stationary state. As long as the reg
is limited, the Dirichlet Laplacian eigenfunctions and eige
values form a countable system@24,25#. All the eigenvalues
are negative@25#. Regardless of the dimension of space,
can enumerate the eigenfunctions and eigenvalues with
index i 51,2, . . . ,1` in such a way that the eigenvalue
form the ordered sequence

0.l1.l2>l3>l4>•••2`. ~13!

If the region has a connected interior, the first eigenvaluel1
cannot be degenerated@25#. However, further eigenvalue
may be degenerated.

Let us consider the span of the orthonormal system
Dirichlet Laplacian eigenfunctionsui(r ) corresponding to
the eigenvaluesl i and the sequence of real numbersb i with
definitions as follows:

Dui~r !5l iui~r ! E
V
ui~r !dV5b i , ~14!

E
V
ui~r !uj~r !dV5H 0 if iÞ j ,

1 if i 5 j .
~15!

In such a basis we expand the time-dependent PDF:

p~r ,t !5(
i 51

`

ci~ t !ui~r !, ~16!

The real coefficientsci are chosen in such a way to guarant
non-negative values of the PDF inside the region and to p
vide the normalization

E
V
p~r ,t !dV5(

i 51

`

ci~ t !b i51. ~17!

In further consideration we will use the fact that at ea
momentc1Þ0. To prove it, let us suppose thatc150. From
Eq. ~15! we would obtain

c150 ⇒ E
V
u1~r !p~r ,t !dV50. ~18!

The first eigenfunctionu1(r ) does not change sign inside th
region@24,25#. Moreover, if the region has a connected in
rior, u1(r )Þ0 for eachr in the interior of the region. To
reconcile this with Eqs.~17! and ~18!, the PDF would have
01611
F
-

n

c-
f
n
-

an

f

o-

-

to change sign in the region. Because the PDF must be n
negative, we must havec1Þ0.

Henceforth, if not otherwise noted, all summations r
from 1 to 1`.

Equation~10!, when combined with Eq.~16!, takes the
following form:

1

K (
i

dci

dt
ui5(

i
cil iui2(

i
ciui(

j
cjl jb j . ~19!

Thus the expansion coefficientsci(t) satisfy ordinary differ-
ential equations of the form

1

K

dci

dt
5l ici2ci(

j
b j cjl j . ~20!

Depending on the actual configuration, the absolute val
ici i may decrease as well as increase at the given mom
However, except foric1i , they approach 0 in the last stag
of evolution @see the note below Eq.~12!#.

B. Asymptotic behavior

The stationary solution, given by Eq.~12!, has the form

ps~r !5c1u1~r !, ~21!

where c151/b1. In the long-time limit, the PDF become
equal to this stationary solution, with some small addition
higher eigenfunctions. Near the stationary state Eq.~20! be-
comes linear; thus fori>2 the coefficientsci vanish expo-
nentially, with the decay rate equal toK(l12l i).

Let us consider the competition of two different coef
cientsciÞ0 andcjÞ0. If l i.l j , then there will be a time
when ~and after which! uci u@ucj u, regardless of the initial
values. For this reason, in the last stage of reaching the
tionary state only the eigenfunctions associated with the lo
est possible eigenvalues~as far as modulus is concerned! are
present in the PDF. The first of these eigenvalues is alw
l1, but the next relevant—say,lq—may be higher thanl2.
That is because selective excitations are possible~some co-
efficients may be exactly zero, e.g., if the initial state has
same symmetry as the stationary state!. Moreover, the eigen-
value lq may be degenerated. Thus in the general case
long-time limit of PDF is assumed in the following form:

p~r ,t→`!'c1~ t !u1~r !1(
q8

cq8~ t !uq8~r !, ~22!

whereq8 runs over the orthogonal eigenfunctions associa
with lq ~first excited eigenvalue, usuallyq52). From Eq.
~20! we obtain

dc1

dt
5c1K~l12lq!(

q8
bq8cq8 , ~23!

dcq8
dt

5cq8K~lq2l1!c1b1 ~ for each q8!. ~24!
0-3
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We assume thatcq8 are small andc1b1'1. It allows us to
linearize the above equations,

dc1

dt
5

K

b1
~l12lq!(

q8
bq8cq8 , ~25!

dcq8
dt

5cq8K~lq2l1! ~ for each q8!, ~26!

and to find the solutions consistent with previous assum
tions:

cq8'Aq8e
K(lq2l1)t ~ for each q8!, ~27!

c1'
1

b1
2

1

b1
S (

q8
bq8Aq8D eK(lq2l1)t. ~28!

As we can see, the relaxation towards a steady state is e
nential. Notice that the assumptionAq8Þ0 is insufficient to
ensure a nonzero value of dc1 /dt in Eq. ~25!, because the
factorsbq8 may be zero forq8>2 or the sum ofbq8Aq8 may
vanish for someAq8 combinations.

IV. ENTROPY AND ITS PRODUCTION

According to the discussion presented in the Introducti
we have found that Eq.~3! with a52, i.e.,

S@p#52 lnS VE
V
p2dVD , ~29!

describes the entropy of the system. Additionally, the volu
of the region,V, has been added in Eq.~29! for dimensional
reasons.

This entropy describes the system only, and it does
account for any changes in the environment. If we want
considered system to be physical, we must treat the d
and birth as external processes. Something takes all the
ticles from the boundaries and moves them back to the i
rior of the region. The entropy of that external pumping d
vice must increase, as in the case of the entropy of
Maxwell’s daemon. That is a reason why the entropy~29!
may decrease as well as increase during the evolution. U
Eq. ~4! we obtain the equation for the evolution ofS:

dS

dt
5

22KE
V

pDpdV

E
V

p2dV

22L~ t !. ~30!

On the right side we can see the sum of two terms, wh
could be interpreted as the entropy production and the
tropy flux. By using formula~9! we get it in a more explicit
form:
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Due to the non-negativity of the PDF, the outgoing entro
flux must be negative or zero.

However, the entropy productions@p# is always positive.
It results from the condition~6! and the Green theorem:

s@p#5

22KE
V

pDpdV

E
V

p2dV

5

2KE
V

~¹p!2dV

E
V

p2dV

. ~32!

In the reciprocal space, with definitions given by Eqs.~14!
and ~16!, the entropy production takes the form

s@p#5

22K(
i

ci
2l i

(
i

ci
2

. ~33!

Sincel1,0 andil i i.il1i for eachi .1, the entropy pro-
duction is minimized in the stationary state:

smin5ss522Kl1 . ~34!

Moreover, beyond the stationary state the following relat
~proved in the Appendix! is always satisfied:

ds

dt
,0; ~35!

i.e.,s is a monotonically decreasing function of time. This
an equivalence of the H theorem for the entropy product
in the irreversible nonextensive system.

Asymptotic behavior

Using the asymptotic PDF expansion from Eq.~22! we
obtain

s'22K
c1

2l11lq( cq8
2

c1
21( cq8

2

522KF l11~lq2l1!
( cq8

2

c1
2

1OS ( cq8
2

c1
2

D 2G .

~36!

Substitutingc1 andcq8 by Eqs.~27! and~28! and neglecting
higher-order terms we obtain
0-4
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MINIMIZATION OF THE RENYI ENTROPY . . . PHYSICAL REVIEW E69, 016110 ~2004!
s'22KFl11~lq2l1!b1
2S ( Aq8

2 De2K(lq2l1)tG
5ss1iconst1i3e2K(lq2l1)t, ~37!

wheress means entropy production in the stationary stat
Similarly we calculate asymptotic form of the entrop

time derivative:

dS

dt
522

c1ċ11( cq8ċq8

c1
21( cq8

2
. ~38!

We consider two separate cases~see the notice at the en
of Sec. III!, depending on the value ofċ1 given by Eq.~23!.

~i! If ċ150, the leading time-dependent term in expans
of Eq. ~38! is a quadratic function of the perturbation amp
tudesAq8 :

dS

dt
5iconst1i3e2K(lq2l1)t, ~39!

where const1 is the same as in Eq.~37!.
~ii ! If ċ1Þ0, the leading term is a linear function of

perturbation amplitudesAq8 :

dS

dt
5const23eK(lq2l1)t, ~40!

where

const252K~lq2l1!(
q8

bq8Aq8 .

In both cases the long-time approach of the entropy fu
tion to the stationary state is exponential. The perturbati
being orthogonal with respect to the stationary state@case~i!#
give the asymptotic increasing of the entropy with the sa
exponent as in the relaxation of entropy production@compare
Eq. ~39! for entropy and Eq.~37! for production#.

All the other perturbations give the entropy relaxati
conforming to Eq.~40!, with the exponent twice smaller tha
in the entropy production relaxation, Eq.~37!. The direction
of long-time entropy approach to the stationary state may
increasing as well as decreasing in this case.

V. 2D SIMULATIONS

A. Simulation method

We solve Eq.~10! in the discrete space with time ste
Dt51, lattice units Dx5Dy51, and discrete Laplacian
Dp(x,y) defined as follows:

D i , j
t 5pi 21,j

t 1pi 11,j
t 1pi , j 21

t 1pi , j 11
t 24pi , j

t . ~41!

Applying the Euler method to Eq.~10! we obtain
01611
n

-
s

e

e

pi , j
t112pi , j

t 5KD i , j
t 2Kpi , j

t (
n,m

Dn,m
t . ~42!

Unfortunately, that differential scheme is not time center
Consequently, it may lead to the accumulation of numeri
errors, especially to the loss of PDF normalization. To av
this, one may use the modified Euler method or the Run
Kutta algorithm.

Instead of that, we consider a small modification of t
aforementioned scheme:

pi , j
t112pi , j

t 5KD i , j
t 2Kpi , j

t11(
n,m

Dn,m
t . ~43!

Now the normalization of the PDF is preserved as long as
calculations are exact. From Eq.~43! we obtain

pi , j
t115

pi , j
t 1KD i , j

t

11K(
n,m

Dn,m
t

. ~44!

By the summation overi , j we get

(
i , j

pi , j
t 51⇒(

i , j
pi , j

t1151. ~45!

It is not sufficient to guarantee conservation of the norm
ization in numerical calculations. Numerical inexactness m
accumulate during successive iterations of Eq.~44!. Let us
suppose that the PDF is normalized to 11e, wheree is a
small number of any sign:

(
i , j

pi , j
t 511e t . ~46!

From Eq.~44! we obtain

e t115
1

11K(
n,m

Dn,m
t

e t . ~47!

The sum in the denominator is negative; thus the error a
plification factor is greater than unity.

To avoid this~i.e., to stabilize the method! we rewrite Eq.
~44! in the following form:

pi , j
t115

pi , j
t 1KD i , j

t

(
n,m

~pn,m
t 1KDn,m

t !

. ~48!

Now the normalization of the PDF is restored in each ite
tion.

For practical reasons the numerical calculations are p
formed in two steps. In the first step, the auxiliary mat
elementsqi , j are calculated:

qi , j5pi , j
t 1KD i , j

t . ~49!
0-5
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This step represents pure diffusion.
In the second step the normalization is restored:

W5S (
i , j

qi , j D 21

, pi , j
t115Wqi , j . ~50!

As we can see, our simulation method may be treated
interleaving diffusion and renormalization steps.

B. Square region

The evolution of the PDF within the square region is an
lyzed. The lattice used in the computer simulation has 1
3101 nodes, which corresponds to the square of 1003100
lattice units.

The initial conditions used and the stationary state of
PDF are shown in Fig. 1. The simulation results are in
cordance with the theoretical considerations. Regardles
the initial conditions, the PDF of the stationary state obtain
from the simulation is approximately equal to the cor
sponding stationary state of the continuous system:

ps~r !5
2

ANxNy

sin
px

Nx
sin

py

Ny
. ~51!

In the case of the initial conditions A~Fig. 1! the entropy
production is always smaller than outgoing entropy flux@de-
fined in Eq.~31!#; thus the entropy of the system decreas
with time. In cases B, C and D this relation is inverted. Ca
E is more interesting~see Fig. 2!: at the beginning the pro
duction is greater than the flux, but it becomes smaller a
3265 simulation steps~with K51/8).

The asymptotic behavior of dS/dt is studied for each of
the initial conditions from Fig. 1. As we can see in Fig. 3, t
relaxation ofudS/dtu near the stationary state~after long evo-
lution time! is exponential; however, the exponent value d
pends on the initial conditions.

The asymptotes are fitted to the tails of the curves fr
Fig. 3 by linear regression:

FIG. 1. Various initial states~A uniform, B, C, D, E localized at
points! and the contour plot of the stationary state~F! of the PDF
within a two-dimensional square region of size 1003100.
01611
as

-
1

e
-
of
d
-

s
e

r

-

lnUdS

dt U'ãt1b̃. ~52!

From Eqs.~39! and ~40! we obtain

ã5jqK~lq2l1!, where jq5$1 or 2%. ~53!

For the square, withNx5Ny5N, we obtain~with accuracy
limited by the discretization error!

ã'2jm,n

Kp2

N2
~m21n222!, ~54!

wherem>1 andn>1 denote the leading eigenvaluelm,n ,
andjm,n can be written as

FIG. 2. The entropy productions ~squares!, the escape flux 2L
~circles!, and the entropy time derivative~no symbols! of the sys-
tem started from initial condition E, Fig. 1. In magnified scale~in-
set! we can see the crossing of curves, after which dS/dt becomes
negative, and further it approaches zero from below.

FIG. 3. Long-time behavior of lnudS/dtu for the initial conditions
as in Fig. 1~with consistency of the letter signs!. These curves have
linear asymptotes with three different slopes. Note that curve E
the singularity~when the logarithm argument passes through 0!, and
further it runs along curve C.
0-6
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jm,n522
@~21!m21#@~21!n21#

4
. ~55!

In order to assign the asymptotes to the appropriate eig
values we test the expression

M5
2ãN2

Kp2
, ~56!

which should be a positive integer number:

M5jm,n~m21n222!. ~57!

With an accuracy better than 1023 we get the valuesM58
~case A!, M56 ~B!, M58 ~C!, M516 ~D!, andM58 ~E!.
It leads to the following identification of eigenvalues:

FIG. 4. The rectangular region divided into two segments:h,
offset of the wall position related to the middle of the rectangled,
size of the hole between segments.

FIG. 5. Contour plot snapshots of PDF evolution~details in the
text!. The numbers denote a time from the beginning of the sim
lation ~measured in simulation steps!. The time intervals between
subsequent snapshot are changing—the evolution runs fast a
beginning and much slower during the flow between chambers
01611
n-
l1,2 or l2,1 ~case B!,
l1,3 or l1,3 ~cases A,C,E!,
l3,3 ~case D!.
Asymptotic behavior similar to case B will occur mo

often after applying random or any asymmetric initial con
tions.

C. Transfer between two chambers

We investigate the evolution of the PDF in the tw
dimensional, rectangular region divided by the wall into tw
chambers~see Fig. 4!. The wall is placed across the rectang
with the shifth, and in the middle it has a hole of sized.

The lattice used in the simulation has 2013101 nodes
(Nx5200, Ny5100). Figure 5 shows snapshots of the PD
evolution for parameter valuesd520, h5210 ~measured in
lattice units!. The initial condition isp25,2551 ~the center
point of the left, bottom quarter of the smaller chamber! and
pi , j50 for the rest of the nodes.

The two stages of evolution can be identified here. T
first stage is fast—the PDF covers the smaller chamber,
ing a form similar to the stationary state of the single squ

-

the

FIG. 6. lnudS/dtu as a function of time in the system shown
Fig. 5. Two characteristic exponents are observed: for the ra
process of entropy relaxation in a single chamber~dashed line! and
for the slow transport between chambers@dotted line; see Eqs.~52!
and ~60!#.

FIG. 7. The fraction of particles left in the first chamber as
function of the dividing wall positionh. Curve A is a shifted sine
@see gopen(h) in the text#. Curve C runs near the step functio
gclosed(h) ~not shown here!. The dashed linegref(h), is for the sys-
tem with reflecting boundary conditions.
0-7
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region. In the second, much slower stage, the PDF is pou
from the smaller chamber into the greater one. During t
flow the PDF in each chamber lies similarly to the station
state of closed chamber~with no hole!. In this sense the
evolution of the system could be considered as the sequ
of quasistationary states of two subsystems.

The changes of the lnudS/dtu in time are shown in Fig. 6
The sloping segments of this curve allow one to find ex
nents characterizing the processes described above.
same exponents could be evaluated approximately using
turbation theory. In the limit when the hole diameterd be-
comes small~but still for hÞ0), the lowest Laplacian eigen
values approach the eigenvalues of the separate chamb

l252p2S 1

Ny
2

1
1

~Nx/22h!2D , ~58!

l152p2S 1

Ny
2

1
1

~Nx/21h!2D , ~59!

wherel1 corresponds to the smaller chamber ifh,0, as in
the example under consideration. In this approximation

FIG. 8. Contour plot snapshots of PDF evolution in the rect
gular region divided on three unequal chambers: A, 1003100; B,
100395; and C, 1003105 lattice units. The numbers above th
plots denote a time from the beginning of the simulation~measured
in simulation steps!.

FIG. 9. Values of the PDF in the middle of each chamber in
system shown in Fig. 8.
01611
g
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e

slope of the asymptote@defined in Eq.~52!# for the slow
process~i.e., the transfer of particles between chambers! has
the form

ã5K~l22l1!. ~60!

In the case presented in Fig. 6 the fittedã value differs from
the aforementioned approximation by less than 4%.

D. Stationary state as a function of parameters

Let us consider the following function of parametersh
andd ~see Fig. 4! defined in the stationary state:

g~h,d!5E
0

NyE
0

Nx2h

ps~r !dxdy. ~61!

It describes the fraction of particles localized in the fi
chamber.

In the case ofd5Ny ~rectangular region without an inne
wall! the functiong(h) is sinusoidal:

gopen~h!5g~h,Ny!5
1

2
1

1

2
sinS hp

Nx
D . ~62!

Whend→0 ~fully separated chambers; due to connect
ity loss, we consider this case only in the limit withd
→01) we obtain the step function

-

e

FIG. 10. The same as in Fig. 8, but with different chamber siz
A, 100392; B, 1003103; and C, 1003105 lattice units.

FIG. 11. Values of the PDF in the middle of each chamber in
system shown in Fig. 10.
0-8
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gclosed~h!5g~h,d→01!5H 0 if h,0,

1/2 if h50,

1 if h.0.

~63!

Figure 7 shows these extreme curves and some interme
ones.

For comparison, an analogous curve is shown for the s
tem with reflective boundaries. It is a linear function ofh:

gref~h!5
1

2
1

h

Nx
. ~64!

E. Transfer between three chambers

Two interesting examples of PDF evolution are studied
the system containing three chambers in series connec
The chambers are separated by walls with centered ho
Both systems are simulated on 3013101 lattices, and both
are divided on three chambers by two walls. In the cente
each wall there is a hole of size of 8 lattice units.

The chamber lengths are 100,95,105 in the first c
~shown in Figs. 8 and 9! and 92,103,105 in the second ca
~Figs. 10 and 11!. The initial conditions in both cases are th
same: the whole PDF is localized at a single point of the fi
chamber~signed by letter A!. Figures 8 and 10 show snap
shots of the PDF contour plot during evolution. Figures
and 11 show the evolution of the local PDF value in t
middle of each chamber, respectively.

VI. CONCLUSIONS

We have simulated a model system of Brownian partic
in a box with absorbing boundary conditions, with a bir
rate inside a system matching the death rate at the boun
Such system satisfies a set of equations@Eqs. ~1!, ~2!, and
~29!# for the Renyi entropy.

The distribution of Brownian particles in the stationa
state minimizes the Renyi entropy production@Eqs.~33! and
34!#.

If the evolution takes place in the set of regions connec
by narrow channels, the final distribution is always cente
in the middle of the ‘‘largest’’ region—i.e., the region fo
which the absolute value of the first Dirichlet Laplacian
genvalue would be the smallest under the absence of c
nels ~Figs. 5, 8, and 10!.
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APPENDIX

We prove that the entropy productions @see Eqs.~32! and
~33!# is a strictly monotonically decreasing function of tim
~the H theorem!, except for the stationary state, wheres is
constant and minimized:
01611
ate

s-

n
n.
s.

f

e

t

s

ry.

d
d

n-

ds

dt
5

d

dt S 22KE
V

pDpdV

E
V

p2dV
D

5
2K

S E
V

p2dVD 2 F2E
V

pDpdVE
V

p
]p

]t
dV

2S E
V

]p

]t
DpdV1E

V
pD

]p

]t
dVD E

V
p2dVG

5
2K2

S E
V

p2 dVD 2 F2S E
V

pDpdVD 2

2E
V

p2dV

3E
V
~Dp!2dV2E

V
p2dVE

V
pD~Dp!dVG .

The last of the above passages was obtained after subs
ing the PDF time derivative by the expression given in E
~10!. From the Green theorem we get the following identi

E
V

pD~Dp!dV5E
V
~Dp!2dV1 R

]V
p¹Dp•dS

2 R
]V

Dp¹p•dS,

where the surface integrals are both equal to zero, in ac
dance with Eq.~7!. Finally,

In the reciprocal space, with definitions in Eqs.~14! and~16!,
the term marked asH takes the following form:

H5S (
i

ci
2l i D 2

2S (
i

ci
2D S (

i
ci

2l i
2D

5(
i

ci
2l i(

j
cj

2l j2(
i

ci
2(

j
cj

2l j
2

5(
i , j

ci
2cj

2l il j2
1

2 S (
i , j

ci
2cj

2l j
21(

i , j
ci

2cj
2l i

2D
52

1

2 (
i , j

ci
2cj

2~l i2l j !
2.
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Except for the stationary state, the expression above is
ways negative@we use fact that;tc1Þ0; see Eq.~18! and
the text below it#. Thus the entropy productions is a strictly
monotonically decreasing function of time~or constant, but
s

s

ic

01611
l-only in the stationary state!, and in the limit oft→` it ap-
proaches the value given by Eq.~34! ~which is because the
evolution of the system approaches the stationary state;
@25#!.
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