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Minimization of the Renyi entropy production in the stationary states of the Brownian process
with matched death and birth rates
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We analyze the Fleming-Viot process. The system is confined in a box, whose boundaries act as a sink of
Brownian particles. The death rate at the boundaries is matched by the bra¢wHimgate in the system and
thus the number of particles is kept constant. We show that such a process is described by the Renyi entropy
whose production is minimized in the stationary state. The entropy production in this process is a monotoni-
cally decreasing function of time irrespective of the initial conditions. The first Laplacian eigenvalue is shown
to be equal to the Renyi entropy production in the stationary state. As an example we simulate the process in
a two-dimensional box.
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[. INTRODUCTION ics can be translated into the structure of nonextensive ther-
modynamicq8,16—-19.

Irreversible entropy production is one of the key quanti- It is the purpose of this work to simulate a stochastic
ties in nonequilibrium thermodynami¢4,2]. For open sys- model of Brownian particles with death and branching
tems not far from the equilibrium states it has been conjec(birth), which in the stationary state adopts such a configu-
tured by Prigogine that a system in the stationary stategation which minimizes the Renyi entropy productidinis
compatible with the external constraints, adopts such conresult is complementary to previous approaches, where the
figurations which minimize the entropy productioflEP).  nonlinear Fokker-Planck equatighlLFPE) was studied for
Far from equilibrium MEP breaks down, although part of thevarious thermostatics and the NLFPE was derived from
entropy production given by the contraction of the phasenaximization of the appropriate entropy functiof20,21.
space has been shown to be minimized in some special casesOur methodology is as follows. We first define a nonlinear
[3]. In general one of the approaches to nonequilibrium staequation for the evolution of the probability density in which
tistical mechanics is related to the study of the entropy prononlinearity appears in integral form. From the form of the
duction and escape rate of transport processes far from equgquation we deduce the form of the appropriate entropy as a
librium [4—7] with the emphasis on the Lyapunov exponentsfunctional of the probability distributior§[ p]. The entropy
and the onset of chaos. is chosen in such way that its evolution in time follows a

There is yet another approach to nonequilibrium systemgrescription known from ordinary  nonequilibrium
from the perspective of nonextensive thermodynanm@ls thermodynamics—i.e.,

The construction of the nonextensive thermodynamics is
based on the Tsallis or Renyi entropies. In both cases the
entropy is the property of the whole system and cannot be aSp] _

; . . — = ~Alpl+olp], @
defined for any subsystem. However, the Tsallis entropy is dt
nonextensive in the strong sense; i.e., for two independent

systems(independent in terms of the probabilities of CON-\ here ) is the flux of the entropy and- is its production

figurationg the entropy Qf the sum of the Systems i not,nioh must be positive definite. Moreover, we also insist that
equal to the sum of their gntrop|es. The forr_nallsm of thethe entropy productior must be minimized in the station-
nonextensive thermodynamics has been applied, e.g., to t%ay state; i.e., the equation

onset of chaos in the logistic mapg], anomalous diffusion T

in the presence of external forc€s0], dynamic linear re-

sponse in nonextensive systerfil], connection between dolp]

self-organized critical dissipative systems and the Tsallis en- 5p = 2
tropy [12,13, fractional diffusion proces$14], and low-

dimensional dissipative systeni$5]. One of the goals of

many papers devoted to the nonextensive thermodynamiasust lead to a stationary distribution pf Such a prescrip-
was to analyze the formal structure of the theory and showion for the entropy functional led us unambiguously to the

which of the results of the theory for ordinary thermodynam-Renyi entropy in the case of our procéggscribed beloyw
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1 region has a connected interior, there exists exactly one
In j p, (3)  steady state. Contrary to the system with reflective boundary
conditions, the particle distribution in the steady state of the
system under consideration is not uniform. Due to the ab-
orbing boundary conditions, the particles tend to group in
tHe inner part of the region rather than near the boundaries.

Spl=

-«

with =2, where the integral is over the whole system.
The process, described by the aforementioned equation
which we study in this paper is the Brownian motion of a
multiparticle system in a box with absorbing boundary con-
ditions[22,23. Additionally we assume that if one particle is IIl. CONTINUOUS MODEL

killed at 'ghe boqndary, anqther one, picked at ran_dom inthe The probability density functiofPDP of the system,

system, is duplicated, giving birth to a new particle in thep(r,t), satisfies the following equatiofg2]:

same site. As we can see the birth rules are chosen in such a

way as to keep the number of particles constant at each time 9

step. Moreover, the nonextensive nature of the system is evi- St PO =KApP(r,H)+A()P(r.Y), (4)

dent: the flux of the particles at the boundary affects imme-

diately the distribution of the particles inside the system, no

matter how large the system is. Such a system cannot be f p(r,t)dv=1, (5)

divided into subsystems. v
The paper is organized as follows: In Sec. Il we describe : . e . :

the system containing a finite number of Flemming-Viot par_yvhereK is a positive diffusion constant, and the integration

ticles. In Sec. Ill we introduce the continuous model of the'S V& whole volume of the system. The ter{t)p(r,t)

above system, and we analyze the evolution of the probabillgepr?sel}{stpa}rtche multtlpllcatlon at tthetr?omtatt tllmebt. A i
ity distribution. In Sec. IV related thermodynamic function- unction A(t) is chosen to compensate the actual absorption

als are studied, especially the entropy production. In Sec. \9f particles at the boundaries. For each pojnat the bound-

we present the results of a computer simulation of the two@"Y Of the region, the following boundary condition is im-

dimensional systems. The Appendix contains the proofs oposed:
the H theorem equivalent for the entropy production. p(ro,t)=0. 6)
Il. BROWNIAN MOTION WITH MATCHED DEATH AND Combining Eq.(4) with the condition given by Eq6) im-
BIRTH RATES plies that
Let us consider a system containing many particles each Ap(rg,t)=0 (7

performing an independent random walk inside a given re-
gion. A special kind of boundary condition is imposed: afor eachry on the boundary.
particle must vanish after reaching the border of the region, Integrating Eq(4) over the system, we obtain
and, exactly at the same time, another partideosen at
random is duplicated. In other words, a particle is removed __ f
when it reaches any point located at the boundary. Simulta- A K VApdV ®
neously, a new particle is introduced and placed at the posi-
tion of randomly chosen particle. It follows that the total or, applying the Green theorem,
number of the particles in the system is conserved. The prob-
a_\bility of the multi_plication process d_escribe(_JI above is iden- A(t)=—K i; Vp-ds. 9)
tical for each particle. Further Brownian motions of the cho- N
sen particle, and its copy, are independent.

The evolution of the system under consideration depends By substitutingA (t) we can rewrite Eq(4) governing the
on the number and initial position of the particles. Unfortu-€volution of the system in the following form:
nately, a quantitative description of the values characterizing
the system statélike entropy or even the local density of ﬁ_p_KA _

; . . ) N = p—K

particleg is burdened with fluctuations. Their significance ot
vanishes in the limit when the number of particles goes to
infinity. By settingdp/dt=0, we obtain the equation for the station-

Although we have performed numerical simulations ofary solutionpg(r):
the aforementioned system with finite particle number, we do
not include these results in the paper. Instead of that we Aps(r)=( fV,Aps(f')dV'

f Apdv) p. (10
\%

examined the continuous model of probability distribution Ps(r). (11)

evolution. Both models—the many-particle and the continu-

ous one(described in the following sectipr-give the same The equation must be satisfied for eaclHowever, the ex-

results in the limit of a large number of particles. pression in brackets is a number independemt dterefore
We will show that irrespective of the initial conditions, Eq. (11) is the equation for the Dirichlet Laplacian eigen-

the particle distribution evolves towards a steady state. If théunctions for the considered regip24,25. Only one of such
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eigenfunctions satisfies the condition of non-negative PDRo change sign in the region. Because the PDF must be non-
values. It is the eigenfunction associated with the first eigennegative, we must have, # 0.

value\, (with the notion as in the next paragraph Henceforth, if not otherwise noted, all summations run
from 1 to +oo.
Aps=A1ps. 12 Equation(10), when combined with Eq(16), takes the

This stationary solution is always asymptotically achieved infollowmg form:

the limit of t—c (proved in[25]). 1 de.
I

RE EUFE Ci)\iui_z Ciuiz Cl)\lﬁl (19)

A. Evolution in the reciprocal space : : : J

~ The form of the stationary state suggests the eigenfuncrhus the expansion coefficientgt) satisfy ordinary differ-
tion decomposition to be a helpful tool also in analysis ofential equations of the form

dynamics far from the stationary state. As long as the region

is limited, the Dirichlet Laplacian eigenfunctions and eigen- 1 dc;

values form a countable systdi®4,25. All the eigenvalues Kdt NiCi— Ciz BiCi\j . (20)
are negativg25]. Regardless of the dimension of space, we !

can enumerate the eigenfunctions and eigenvalues with
indexi=1,2,... 40 in such a way that the eigenvalues
form the ordered sequence

aSepending on the actual configuration, the absolute values
lcill may decrease as well as increase at the given moment.
However, except fofic,|, they approach 0 in the last stage

O>A>Ap=Ng=N = — 0, (13)  of evolution[see the note below E§12)].
If the region has a connected interior, the first eigenvalye B. Asymptotic behavior
cannot be degeneratd@5]. However, further eigenvalues _ i )
may be degenerated. The stationary solution, given by E(L2), has the form

Let us consider the span of the orthonormal system of
Dirichlet Laplacian eigenfunctionsi;(r) corresponding to
the eigenvalues; and the sequence of real numbgrswith
definitions as follows:

Ps(r)=cquy(r), (21

wherec,;=1/8;. In the long-time limit, the PDF becomes
equal to this stationary solution, with some small addition of
higher eigenfunctions. Near the stationary state (26 be-
Au;(r)=N\;u;(r) f u(rydv=g;, (14 comes linear; thus for=2 the coefficientg; vanish expo-
v nentially, with the decay rate equal K(\;—\;).
Let us consider the competition of two different coeffi-
(15) cientsc;#0 andc;#0. If A{>\;, then there will be a time
when (and after which |cj|>|c;|, regardless of the initial
values. For this reason, in the last stage of reaching the sta-
In such a basis we expand the time-dependent PDF: tionary state only the eigenfunctions associated with the low-
est possible eigenvaluéas far as modulus is concerneate
present in the PDF. The first of these eigenvalues is always
N1, but the next relevant—sak,,—may be higher than .
That is because selective excitations are posginene co-
The real coefficients; are chosen in such a way to guaranteeefficients may be exactly zero, e.g., if the initial state has the
non-negative values of the PDF inside the region and to prosame symmetry as the stationary stakéoreover, the eigen-
vide the normalization value \q may be degenerated. Thus in the general case the
long-time limit of PDF is assumed in the following form:

0 if i#],

fv”i(r)uj(r)d\/:[l it i=j.

p(r,t>=i=21ci<t>ui<r>, (16)

f p(r,Hdv= 2, ci(t)gi=1. (17
Y o P(r t—)=cy(Huy(N+ X cqr(ug (), (22

In further consideration we will use the fact that at each K

momentc; #0. To prove it, let us suppose that=0. From  whereq’ runs over the orthogonal eigenfunctions associated

Eq. (15 we would obtain with A (first excited eigenvalue, usualty=2). From Eq.
(20) we obtain

c,=0 = f uq(r)p(r,t)dv=0. (18
% dc;
5 KM= )2 Bycy, (23
The first eigenfunctiom;(r) does not change sign inside the q’
region[24,25. Moreover, if the region has a connected inte- q
rior, uy(r)#0 for eachr in the interior of the region. To GCqr _ _ /
reconcile this with Eqs(17) and (18), the PDF would have q  CaKqmA)efy  (foreachq’). (24
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We assume that,, are small anct;8,~1. It allows us to A
linearize the above equations, ds —2K o P pdV
- T2 ¢ Vp.ds
de;, K f p’dv _— 1
E:E()\l_)\q)g Bq’cq’r (25) \4 outgoing flux (3 )

entropy production, o

de., Due to the non-negativity of the PDF, the outgoing entropy
d—tq=cq,K()\q—)\1) (foreachq’), (26)  flux must be negative or zero.
However, the entropy productian p] is always positive.

. . ) . . It results from the conditiori6) and the Green theorem:
and to find the solutions consistent with previous assump-

tions:
—2Kf pApdV 2Kf (Vp)?av
. K(\g— At / = v =
Cqr~AgefPa 2t (foreachq’), 27 olp]= =

\%
f p2dVv p2dv
\% \%

(32

1 1
Bi Bi\y In the reciprocal space, with definitions given by E(&)

and(16), the entropy production takes the form
As we can see, the relaxation towards a steady state is expo-

nential. Notice that the assumptidy,, # 0 is insufficient to —ZKE c2\.
ensure a nonzero value otddt in Eq. (25), because the S
factors3,, may be zero fog’ =2 or the sum o3, A, may olp]= : 33
vanish for someA,, combinations. 2 c?
I
IV. ENTROPY AND ITS PRODUCTION SinceX ;<0 and|\||>|/\4| for eachi>1, the entropy pro-

According to the discussion presented in the Introductionfjucuon is minimized in the stationary state:

we have found that Eq3) with =2, i.e.,

Omin=0s= — 2K\ . (39
_ 2 Moreover, beyond the stationary state the following relation
Sp] In(VLp dV), (29 (proved in the Appendixis always satisfied:
describes the entropy of the system. Additionally, the volume d_a<o; (35)
of the region,V, has been added in ER9) for dimensional dt

reasons.

This entropy describes the system only, and it does ndkt€., o is @ monotonically decreasing function of time. This is
account for any changes in the environment. If we want thétn equivalence of the H theorem for the entropy production
considered system to be physical, we must treat the deaiR the irreversible nonextensive system.
and birth as external processes. Something takes all the par-
ticles from the boundaries and moves them back to the inte- Asymptotic behavior
rior of the region. The entropy of that external pumping de- : . .
vice must increase, as in the case of the entropy of theb,[Uf‘:'Ing the asymptotic PDF expansion from Eg2) we
Maxwell's daemon. That is a reason why the entr@pg) obtain
may decrease as well as increase during the evolution. Using

Eq. (4) we obtain the equation for the evolution &f cf)\1+ )\qE cé,
o~—2K
2 2
—ZKJ pApdV 2 ¢
°“__ 2A(t) (30 2
o . ' 2 2
f p2dV 2 Cq, E Cq’
v =—2K| Mg+ (Ng—Ay)——+0 >
€1 €1
On the right side we can see the sum of two terms, which (36)

could be interpreted as the entropy production and the en-
tropy flux. By using formula9) we get it in a more explicit ~ Substitutingc, andc,, by Egs.(27) and(28) and neglecting
form: higher-order terms we obtain
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N+ (A 1>B1(2 AL 2““1”} pfil—p.rKAi‘,;—Kpa‘,j% Afm- (42)

=gt consg] x e?Ka ), (37)

o~—2K

Unfortunately, that differential scheme is not time centered.
Consequently, it may lead to the accumulation of numerical
errors, especially to the loss of PDF normalization. To avoid
this, one may use the modified Euler method or the Runge-
Kutta algorithm.

Instead of that, we consider a small modification of the
C1C1+ D, cq,éq, aforementioned scheme:

=—2—. (38
3+ ¢ PLj Pl = KAL = KPS AL (43)

where o means entropy production in the stationary state.
Similarly we calculate asymptotic form of the entropy
time derivative:

ds
dt

We consider two separate cagsese the notice at the end Now the normalization of the PDF is preserved as long as the
of Sec. |||) depending on the value of given by Eq.(23). calculations are exact. From E@3) we obtain

@i If cl 0, the leading time-dependent term in expansion n KA‘
of Eq. (38) is a quadratic function of the perturbation ampli- pt+l p, y (44)
i,j .

tudesAy 14K Ah,m
n,m
— 2K(Ng— At
E—Hcons;”xe Bamrol, (39 By the summation over,j we get
where constis the same as in Eq37). 2 p! ,_1:>E pt+l _ (45)

(i) If c;#0, the leading term is a linear function of a

rturbation amplit ' : . .
perturbation amplitudeé, It is not sufficient to guarantee conservation of the normal-

ds ization in numerical calculations. Numerical inexactness may
— =conspx ka0t (40)  accumulate during successive iterations of Edl). Let us
dt suppose that the PDF is normalized te- & wheree is a

small number of any sign:
where

> P =1+e. (46)
consy=2K(Aq— 1) >, BqAq ]
q/

From Eq.(44) we obtain
In both cases the long-time approach of the entropy func-

tion to the stationary state is exponential. The perturbations B 1
being orthogonal with respect to the stationary stetese(i)] €t+17 . €t (47)
give the asymptotic increasing of the entropy with the same 1+ KZ Anm

n,m

exponent as in the relaxation of entropy producficompare
Eq. (39) for entropy and Eq(37) for productior.

All the other perturbations give the entropy relaxation
conforming to Eq(40), with the exponent twice smaller than
in the entropy production relaxation, E@7). The direction
of long-time entropy approach to the stationary state may b
increasing as well as decreasing in this case.

The sum in the denominator is negative; thus the error am-
plification factor is greater than unity.

To avoid this(i.e., to stabilize the methgdve rewrite Eq.
é44) in the following form:

pi ;T KA}
pjt=— - (48)
V. 2D SIMULATIONS 2 (Phmt KAL)
n,m ' '

A. Simulation method
We SOIVe Eq (10) |n the d|screte Space W|th t|me Step NOW the normahzatlon Of the PDF |S restored |n eaCh |tera'
At=1, lattice unitsAx=Ay=1, and discrete Laplacian tion.

Ap(x,y) defined as follows: For practical reasons the numerical calculations are per-
formed in two steps. In the first step, the auxiliary matrix
Ajj=piqj+t Pl tP o1t P41~ 4P . (41)  elementsy; ; are calculated:
Applying the Euler method to Eq10) we obtain a1 =P+ KAj;. (49
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A B c 0.003
e |
® 0.002
; ' 0.001
D E F A
77777 ‘ 0.0
; i ] 1 | 1 | 1
————— ® - ; : 0 2000 4000 6000
| ! t [simulation steps]
e
| | FIG. 2. The entropy productios (squarey the escape flux 2

(circles, and the entropy time derivativemo symbol$ of the sys-
FIG. 1. Various initial stategA uniform, B, C, D, E localized at  tem started from initial condition E, Fig. 1. In magnified scéte
pointg and the contour plot of the stationary sték¢ of the PDF  se) we can see the crossing of curves, after whiGhdd becomes

within a two-dimensional square region of size ¥Q0DO. negative, and further it approaches zero from below.
This step represents pure diffusion. asl . _
In the second step the normalization is restored: In r ~at+b. (52
-1
W:(Zj qi,j) . pit=Wa . (500 From Egs.(39) and(40) we obtain
As we can see, our simulation method may be treated as 5=§qK()\q—)\l), where §,={1 or 2}. (53

interleaving diffusion and renormalization steps.

For the square, witiN,=N,=N, we obtain(with accuracy
B. Square region limited by the discretization errpr

The evolution of the PDF within the square region is ana-
lyzed. The lattice used in the computer simulation has 101
X101 nodes, which corresponds to the square of<ID00
lattice units.

The initial conditions used and the stationary state of the h ~1 andn=1 denote the leadi . I
PDF are shown in Fig. 1. The simulation results are in acy/nerem=_ andn=-_ denole Ihe leading eigenvalig,n.
cordance with the theoretical considerations. Regardless &nd $m,n Can be written as
the initial conditions, the PDF of the stationary state obtained
from the simulation is approximately equal to the corre-
sponding stationary state of the continuous system:

~ K 72 ’ 5
a%_fm,nv(m +n°—2), (549)

-5

2 omX . omy
sin—sin—. (51) 10

= ——
pS( ) \/W Nx Ny

In the case of the initial conditions &Fig. 1) the entropy
production is always smaller than outgoing entropy fldg-
fined in Eq.(31)]; thus the entropy of the system decreases -15
with time. In cases B, C and D this relation is inverted. Case
E is more interestingsee Fig. 2 at the beginning the pro-
duction is greater than the flux, but it becomes smaller after
3265 simulation stepgwvith K=1/8).

<

The asymptotic behavior ofSidt is studied for each of 200 5000 10000 15000
the initial conditions from Fig. 1. As we can see in Fig. 3, the t
relaxation offdS/dt| near the stationary statafter long evo- FIG. 3. Long-time behavior of [dS/dt| for the initial conditions
lution time) is exponential; however, the exponent value de-as in Fig. 1(with consistency of the letter signdhese curves have
pends on the initial conditions. linear asymptotes with three different slopes. Note that curve E has
The asymptotes are fitted to the tails of the curves fromthe singularitywhen the logarithm argument passes througtafd
Fig. 3 by linear regression: further it runs along curve C.
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Ny
3Nz h

s

FIG. 4. The rectangular region divided into two segmehts:
offset of the wall position related to the middle of the rectandle;

size of the hole between segments.

[(-D"=1][(-1)"-1]
2 :

fm,nzz_ (55)

In order to assign the asymptotes to the appropriate eigen-

values we test the expression

M= —— (56)

which should be a positive integer number:

M =& n(m2+n?-2). (57
With an accuracy better than 1®we get the values! =8
(case A, M=6 (B), M=8 (C), M=16 (D), andM =8 (E).
It leads to the following identification of eigenvalues:

100 1.10° 5.10° 2:10*

FIG. 5. Contour plot snapshots of PDF evoluti@etails in the

PHYSICAL REVIEW EG69, 016110 (2004

as
dt

2x10°
t [simulation steps]

FIG. 6. InNdS/dt| as a function of time in the system shown in
Fig. 5. Two characteristic exponents are observed: for the rapid
process of entropy relaxation in a single chamlgaished lingand
for the slow transport between chambpdstted line; see Eq$52)
and (60)].

N1o0r Ny, (Case B,

Np30r A3 (cases A,CE

N33 (case D.

Asymptotic behavior similar to case B will occur most
often after applying random or any asymmetric initial condi-
tions.

C. Transfer between two chambers

We investigate the evolution of the PDF in the two-
dimensional, rectangular region divided by the wall into two
chambergsee Fig. 4. The wall is placed across the rectangle
with the shifth, and in the middle it has a hole of side

The lattice used in the simulation has 20101 nodes
(Nx=200, Ny=100). Figure 5 shows snapshots of the PDF
evolution for parameter values= 20, h= — 10 (measured in
lattice unitg. The initial condition ispys,s=1 (the center
point of the left, bottom quarter of the smaller chamkseid
pi,;=0 for the rest of the nodes.

The two stages of evolution can be identified here. The
first stage is fast—the PDF covers the smaller chamber, tak-
ing a form similar to the stationary state of the single square

1 T

=
&
& 08F
2
g
206
g
&
04 hole diameter: B
A - 100%(open)
B -50%
02} W < ¢ C-10% i
0 /JI ]
-100 -50 0 100

50
partition offset A

FIG. 7. The fraction of particles left in the first chamber as a

text). The numbers denote a time from the beginning of the simufunction of the dividing wall positiorh. Curve A is a shifted sine
lation (measured in simulation stgpsThe time intervals between [see gqpe{h) in the texi. Curve C runs near the step function
subsequent snapshot are changing—the evolution runs fast at tlyg,sed{h) (not shown here The dashed ling,¢(h), is for the sys-
beginning and much slower during the flow between chambers. tem with reflecting boundary conditions.
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500 2,6-10° 4,2:10° 6.10° 1,7.10° 2.10°  4.10°  3.10°
A A o A
B B
C C

FIG. 8. Contour plot snapshots of PDF evolution in the rectan- FIG. 10. The same as in Fig. 8, but with different chamber sizes:
gular region divided on three unequal chambers: A,>4000; B, A, 100X 92; B, 100<103; and C, 108 105 lattice units.
100X 95; and C, 10& 105 lattice units. The numbers above the
plots denote a time from the beginning of the simulatioreasured  slope of the asymptotgdefined in Eq.(52)] for the slow

in simulation steps procesgi.e., the transfer of particles between champies
the form

region. In the second, much slower stage, the PDF is pouring ~

from the smaller chamber into the greater one. During this a=K(A_—\,). (60)

flow the PDF in each chamber lies similarly to the stationary _
state of closed chambdwith no holg. In this sense the In the case presented in Fig. 6 the fiteedalue differs from
evolution of the system could be considered as the sequentiee aforementioned approximation by less than 4%.
of quasistationary states of two subsystems.

The changes of the [dS/dt| in time are shown in Fig. 6. D. Stationary state as a function of parameters
The sloping segments of this curve allow one to find expo- . . .
nents characterizing the processes described above. The Let us co'n3|der the fqllowmg fu.nct|on of pgrametdfrs
same exponents could be evaluated approximately using pezil-ndOI (see Fig. 4 defined in the stationary state:
turbation theory. In the limit when the hole diametebe- Ny [Ny—h
comes smal(but still for h+0), the lowest Laplacian eigen- g(h,d)=f j ps(r)dxdy. (61
values approach the eigenvalues of the separate chambers: 0 Jo

1 1 It describes the fraction of particles localized in the first
N = — 72 —+ —2) , (58 chamber. _ _ _
Ny (Ny/2—h) In the case ofi=N, (rectangular region without an inner
wall) the functiong(h) is sinusoidal:
1 1 1 1 [ham
)\ = - 7T2 -5 + - 4 y 59 = = — —_— i .
+ N2 Ny (59 Joper M =09(hNy) =5+ sm( Nx) (62

_ ) Whend—0 (fully separated chambers; due to connectiv-
where\ . corresponds to the smaller chamben#0, asin ity |oss, we consider this case only in the limit with

the example under consideration. In this approximation the’,o+) we obtain the step function

0.0002 0.0002

T
s}
1

0.0001 0.0001

T
1

. . _ ,
0 5x10° .10 1.5x10° 0 5x10° . 10° 1.5x10°

FIG. 9. Values of the PDF in the middle of each chamber in the FIG. 11. Values of the PDF in the middle of each chamber in the
system shown in Fig. 8. system shown in Fig. 10.
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0 if h<Q,
. —ZKJ pApdv
Goosed M) =g(h,d—0")=1 1/2 if h=0, (63 do_d oo
1 if h>0. dt dt f 02dV
\%
Figure 7 shows these extreme curves and some intermediate
ones. =—2K 2f A dvf (?—pdV
For comparison, an analogous curve is shown for the sys- 24V 2 % Pap Vv P at
tem with reflective boundaries. It is a linear functionfof v P
p p f
1 h | == - 2
G )= 5+ 1 (64 (Jvat ApdvE JV PA 5t d\’) VP dv}
X

2K?2

WM fv pApdV)z— fv p2av

E. Transfer between three chambers

Two interesting examples of PDF evolution are studied in
the system containing three chambers in series connection.
The chambers are separated by walls with centered holes. J ) j 2 J

. X X | (Ap)edV— av A(Ap)dv
Both systems are simulated on 30101 lattices, and both v( P) v P v PA(AP)
are divided on three chambers by two walls. In the center of

each wall there is a hole of size of 8 lattice units. The last of the above passages was obtained after substitut-
The chamber lengths are 100,95,105 in the first casghg the PDF time derivative by the expression given in Eq.

(shown in Figs. 8 and)%and 92,103,105 in the second case(10). From the Green theorem we get the following identity:
(Figs. 10 and 1L The initial conditions in both cases are the

same: the whole PDF is localized at a single point of the first
chamber(signed by letter A Figures 8 and 10 show snap-
shots of the PDF contour plot during evolution. Figures 9
and 11 show the evolution of the local PDF value in the
middle of each chamber, respectively.

f pA(Ap)dV:f (Ap)2dV+ 3@ pVAp-dS
\Y \% Vv

- fﬁ ApVp-dS,
oV
VI. CONCLUSIONS

é/vhere the surface integrals are both equal to zero, in accor-

We have simul model m of Brownian particl . .
e have simulated a model system of Brownia patcedancewnh Eq(7). Finally,

in a box with absorbing boundary conditions, with a birth

rate inside a system matching the death rate at the boundary.

Such system satisfies a set of equatipigs. (1), (2), and do 2K

(29)] for the Renyi entropy. dr R
The distribution of Brownian particles in the stationary jv pdv

state minimizes the Renyi entropy producti@ys.(33) and
34)]. 2
j pApdV) —(j pzdv>(j (Ap)de”
\%4 \%4 \%4

2

If the evolution takes place in the set of regions connected X
by narrow channels, the final distribution is always centered
in the middle of the “largest” region—i.e., the region for further estimated as H
which the absolute value of the first Dirichlet Laplacian ei-
genvalue would be the smallest under the absence of cham the reciprocal space, with definitions in E¢4) and(16),

nels(Figs. 5, 8, and 10 the term marked akl takes the following form:
2
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APPENDIX

1
| -3 cizcjz)\i)\j——(E NI
We prove that the entropy productiensee Eqs(32) and ] 2\ 1 ]
(33)] is a strictly monotonically decreasing function of time
(the H theoremny except for the stationary state, wheres

constant and minimized:

1
2.2 2
-5 iE,j Cici(Ni— N
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Except for the stationary state, the expression above is abnly in the stationary stateand in the limit oft—oo it ap-

ways negativdwe use fact tha¥tc,;#0; see Eq(18) and
the text below it. Thus the entropy productiom is a strictly
monotonically decreasing function of tin{er constant, but

proaches the value given by E@4) (which is because the
evolution of the system approaches the stationary state; see

[25)).
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